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ABSTRACT1
This paper proposed a general data-driven Network Performance Model (NPM) for daily network2
performance monitoring using smart card data. The major component of NPM is a schedule-based3
network loading model with strict capacity constraints. The potential applications of NPM include4
estimating crowding patterns, diagnosing crowding sources and evaluating network resilience. A5
method for calibrating train capacity is introduced, which explicitly recognizes that capacity may6
be different at different stations depending on the congestion level. Case studies are conducted7
based on the Mass Transit Railway (MTR) system in Hong Kong. The NPM model was first8
validated using denied boarding survey and exit demand data. Then, we demonstrated its capability9
in performance monitoring by analyzing the spatio-temporal crowding patterns and evaluating the10
network resilience.11

12
Keywords: Transit network loading; Performance monitoring; Effective capacity; Event-driven13
simulation14
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INTRODUCTION1
Motivation2
Urban rail transit systems are the principal means of public transportation in many of the metropoli-3
tan areas. Due to its high reliability, large capacity, and low pollution, rail transit services continue4
to grow along with rising demand. However, in the context of large-scale network and high-volume5
demand, recurrent congestion in peak hours and sudden incidents in the system are becoming a6
major concern. Ensuring normal operations is important to keep the smooth and efficient urban7
mobility. Dynamic Crowd Management Systems (DCMS) are means to deal with system opera-8
tion of near capacity, including crowding and incidents. It can assist the operators to understand,9
inform and improve the transit services, especially under capacity constraints. There are many10
sub-problems under the DCMS framework, which covers different dimensions of management. In11
this study, we focus on the "performance monitoring" problem. Network performance monitoring12
means obtaining the level of service and operation information of the network (e.g. train load) and13
analyzing the service quality, which is crucial for transportation agencies to identify congestion,14
evaluate the system, and adjust operating strategies.15

Related work16
Performance monitoring can be conducted at two different levels. One is at data-description level17
and another one at in modeling level. For the data-description level, researchers only analyze18
the data which can be directly obtained, such as automated fare collection (AFC) data and au-19
tomated vehicle location (AVL) data. All performance indicators are derived from the raw data.20
For example, Trépanier et al. (1) calculated the performance indicators of network supply (e.g.,21
vehicle-kilometers, vehicle-hours, commercial speed) from the AFC data. Ma and Wang (2) de-22
veloped a data-driven platform for transit performance measurement using AFC and AVL data.23
Indicators such as speed, travel time reliability, station demand are reported. The drawback for24
data-description based performance models is that, only the measurements which is directly avail-25
able in raw data can be calculated. More detailed information, such as vehicle load, is not available.26
In terms of modeling level method, the performance monitoring is usually achieved by the network27
loading and network assignment models. In network loading framework, the passengers’ travel be-28
havior is known and then we load passengers to the train accordingly. Network assignment models29
usually take into account passengers’ travel behavior through the user equilibrium assumption. The30
models typically perform many network loading operations to update passengers’ travel behaviors31
until convergence. Regardless of what framework to use, the network loading is a key component32
for modeling-level performance monitoring.33

In the context of both transit network loading and assignment, the models can be divided34
into two categories, the frequency-based models and the schedule- or timetable-based models.35
Frequency-based approaches consider services based on different lines. The average headway or36
average link travel time are defined for each line, while the train schedules are not considered ex-37
plicitly. Therefore, this approach cannot provide detailed performance information at the train level38
(e.g. load of a specific train), only average line performances and flows (3–7). The schedule-based39
approach uses individual train arrival/departure times to model the network operations explicitly.40
Thus, it can capture the dynamic interactions between supply and demand, and provide perfor-41
mance metrics at the train level (8). Many schedule-based models have been proposed in the42
literature. For example, Nuzzolo et al. (8) proposed a dynamic schedule-based assignment model43
for transit networks, which simulates the within-day and day-to-day learning process passengers’44
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route choice. Grube et al. (9) developed an event-based network loading model. Nuzzolo et al. (3)1
proposed a mesoscopic transit modeling framework named "DYBUS2", which provides real-time2
short-term predictions of transit performance. Recently, Yao et al. (10) used an agent-based simu-3
lation model to conduct network assignment. The model is applied to a large-scale network of the4
Beijing subway system.5

Despite the extensive literature on transit performance models, there are still research gaps.6
1) Most of these network loading models are run based on a fixed time step (e.g. 1 second). These7
discrete time models are usually computationally intensive (11). The states of a metro system8
are affected by significant events (e.g. train arrival and departure). So the event-driven paradigm9
is more suitable for modeling urban rail networks by providing higher computational efficiency10
(9). 2) The performance metrics are not systematically and completely reported. For example,11
an important indicator for the network its resilience (12), that is, how the network performs under12
enexpected disruptions. None of the previous models can support network resilience evaluation. 3)13
Most of network loading procedures are developed to mainly serve the transit assignment model.14
They do not focus on the performance evaluation. Thus, the model calibration (e.g. for path shares15
and train capacities) is usually neglected. And the empirical model validations and real-world16
applications are rarely reported.17

Paper objectives and organization18
The paper aims to develop a general network performance model (NPM) used for performance19
monitoring at the platform and train levels. The main characteristics of the model are: 1) it cap-20
tures the fine-grained passenger travel behaviors, such as access and egress walking, queuing,21
transferring, boarding, alighting and left behind. 2) It is based on an event-driven framework (13),22
which is more efficient for large scale networks. 3) It can output complete performance metrics23
(e.g. train load, left behind rate) in both spatial and temporal dimensions. The contributions of this24
paper are threefold.25

• First, a network resilience analysis model is proposed and incorporated into the NPM, which26
allows us to capture the impact of station closure in the network.27

• Second, a simulation-based optimization method for calibrating train capacity is introduced,28
which explicitly recognizes that capacity may be different at different stations depending on29
the congestion level.30

• Third, the model is calibrated, validated and applied using the real-world data in Hong Kong31
Mass Transit Railway (MTR) system, which demonstrate the capabilities of performance mon-32
itoring.33

The remainder of the paper is organized as follows. The schedule-based NPM for transit34
network is introduced in Section 2, which includes the data preparation and network loading.35
Section 3 presents the model calibration methods for route choice and train capacity. The functions36
of NPM for performance monitoring are demonstrated in Section 4. The model implementation37
in Hong Kong MTR networks are presented in Section 5. Section 6 presents the conclusion and38
discussion for this work.39

NETWORK PERFORMANCE MODEL40

Input41
NPM requires multiple inputs including dynamic OD demand, path choice fractions, train move-42
ment information, train capacity and access/egress/transfer walking time. We summarize all inputs43
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data sources in Table 1. AFC data contains people’s tap-in and tap-out time and stations, which can1
provide the complete OD entry demand. As for train movements, the time table can provide the2
planned train arrival and departure information, while the AVL data can provide the actual ones.3
Therefore, if AVL data is available, it is more suitable for performance monitoring. The walking4
time is assumed to be normally distributed where the mean and variance are calculated from the5
observations.6

TABLE 1: Input Variables and Data Sources

Input variables Sources

OD entry demand AFC data
Path choice See Section 3.1
Train movement Time table or AVL data
Train capacity See Section 3.2
Access/egress/transfer walking time Measured by on-site observations

Network loading7
An event-driven framework is used to conduct the network loading. Two types of events are con-8
sidered in this model, train arrival and train departure. The events are sorted by time and processed9
sequentially until all events are successfully processed during the simulation time period. New and10
transferring passengers join the waiting queue on the platform and board a train based on the First11
Come First Serve (FCFS) criteria. The number of boarding passengers depends on the available12
train capacity. The model details are shown in following.13

Preprocessing14
We first set up the simulation period with a warm-up and cool-down time. The warm-up and15
cool-down time are set based on the scale of the network (e.g.30 minutes or 1 hour). We then16
generate the train event lists (arrivals and departures) within the simulation period according to the17
timetable or the actual train movement data from AVL. Each event contains the occurrence time18
and place (platform), as well as the train ID. Then all passengers are assigned a route based on19
the corresponding path choice probability. To simplify the access walking process, we assign the20
access walking time for each passenger based on their walking time distribution of tap-in stations.21
Then the platform arrival time of all passengers can be calculated in advance.22

Train arrival23
To process the arrival event, the train offloads passengers who reach their destination or need to24
transfer at this station, and updates its state (e.g. train load and in-vehicle passengers). For pas-25
sengers who reached their destination, their tap out time is calculated based on the egress walking26
time distribution. For those who transfer at this station, their arrival time for the next platform is27
calculated based on the transfer time distribution. These passengers are then added to the waiting28
queue of that platform based on their arrival time.29
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Train departure1
If the event is departure, the waiting queue of this platform is updated by accumulating the new tap-2
in passengers, that is, passengers who enter and arrive at the platform after the last train departed3
are added into the queue based on their arrival time. Next, passengers will board the train based4
on an FCFS boarding priority rule until the train reach the capacity. Passengers who cannot board5
will be left behind and wait in the queue for the next train. The state of the train and the waiting6
queue at the platform are then updated accordingly.7

Model structure8
Figure 2 shows the diagram of the model structure. Three objects are defined: trains, waiting9
queues and passengers. Passengers are queued based on their arrival time. Three different types10
of passengers are shown in the queue, the left-behind passengers who were denied boarding by11
previous trains, new tap-in passengers, and transfer passengers from other stations. The left-behind12
passengers are usually at the head of the queue. When the train arrives at the station, the offloaded13
passengers either transfer or tap-out. Transfer passengers will join the queue. When the train14
departs from the station, passengers from the queues are loaded up to the train capacity based on15
FCFS rule.

FIGURE 1: Diagram of the Model Structure

16

MODEL CALIBRATION17

Route choice18
The route choice belongs to the general class of discrete choice problems. This framework assumes19
the goal of an individual is to maximize the utility of his/her choice. The choice probability as20
a closed-form expression is also known as the Multinomial Logit (MNL) model. However, in21
the urban rail system, the alternative routes might overlap in certain degree, which violates the22
independence of irrelevant alternative (IIA). assumption of MNL model. A variation of the MNL,23
known as the C-Logit, can be used to correct for this violation. The C-Logit model shares the24
computational and estimation efficiency of the standard Logit model. The basic idea is to deal with25
similarities among overlapping paths through an additional "cost" attribute, called the commonality26
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factor (CF), in the utility function (14). The probability of choosing path i can be formulated below.1

Pi =
exp(βX ·Xi +βCF ·CFi)

∑ j∈W exp(βX ·X j ++βCF ·CFj)
, (1)

where Xi are the attributes for path i, such as in-vehicle time, number of transfers, etc.. W is the2
path set of the OD pair that path i belongs to. βX and βCF are the corresponding coefficients to be3
estimated. CFi is the commonality factor of path i. The CFi can be expressed as following.4

CFi = ln ∑
j∈W

(
Li, j

LiL j
)γ , (2)

where Li, j is the number of common stations of path i and j. Li and L j are the number of stations5
for path i and j, respectively. γ is a positive constant which is determined based on empirical6
studies (15).7

To target in a general NPM framework, we should not rely on the survey data as the input8
because obtaining it is time-consuming and cost-inefficient. Thus, we are developing a AFC data-9
based path choice calibration method (16) which does not rely on external data sources. In the10
future we will combine the path choice calibration module into the proposed NPM. But for this11
paper, as the main purpose is to illustrate the overall framework, the survey-based path shares are12
used.13

Effective capacity14
The capacity of a train is a vague concept. Normally the train cannot reach its designed capacity15
because passengers may deliberately deny to board and due to the lack of space or inability to get16
a seat (17). Therefore, a fixed physical capacity may be hard to capture the real-world situation. In17
this paper, we define a concept termed effective capacity, which is the number of passengers in the18
train after waiting passenger boarding the train while some of them are left behind. It corresponds19
to the concept of willingness to board proposed by Liu et al. (18). This concept comes from the fact20
that although some queuing passengers cannot board a crowded train in this station, when the same21
train arrives at the next station, some other passengers could still get on it (18). So, the "capacity"22
of a train is not a constant and may vary across stations. We use the term effective capacity in this23
study to differentiate with the physical fixed capacity. Note that the effective capacity in this paper24
is station-specific, rather than train-specific.25

Based on previous research, we choose two factors to model the effective capacity (EC).26
One is the current train load when the train enter the station (denoted as L) (18). Another is the27
number of queuing passengers in the platform (denoted as Q) (19). Denote the standard train28
capacity as C. For congested stations, the actual train load always exceeds C according to the29
observations. Since the effective capacity phenomenon usually appears in crowding stations (18),30
the train capacity for uncongested stations is set as C. In this paper, the list of congested stations31
is provided by the operator based on where left-behind often occurs. We formulate the effective32
capacity for platform i (ECi) as a simple linear equations (Eq. 3). The term platform in this study33
means a combination of station+line+direction. The relationship between EC and L,Q may be34
more complex than the assumption. But exploring the expression of EC is beyond the scope of this35
paper.36
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ECi =

{
C+β1Li +β2Qi if platform i is in list of congested stations
C otherwise

(3)

β1 and β2 are the parameters to estimate. We expect both β1 and β2 to be positive. According to the1
psychological effect described in (18), for the train leaving from platform i with some passengers2
being left behind, if the passengers waiting at station i+ 1 cannot board the train, it would give3
them the impression that they would never get on any following trains. So, this passenger will4
have much larger motivation to board the train than passengers in platform i. Therefore, what5
we observe is, even if the train is already very crowded that passengers waiting at platform i do6
not board, the passenger waiting at station i+ 1 will still get on it. Thus, β1 should be positive7
because Qi+1 > Qi and ECi+1 > ECi. The same philosophy can be used to explain the sign of β2.8
If there were many passengers waiting at the platform, people in the tail of the queue would give9
some pressure to people in the head of the queue and push them to board. Thus, EC in congested10
stations should be higher then the uncongested stations, which means β2 should be positive as well.11

Calibrating the value of β is a black-box optimization problem because the network loading12
is a non-analytical process. In this study, a Bayesian Simulation-based Optimization (BSO) method13
(20) is applied. The BSO works by constructing a posterior distribution (surrogate function) that14
best describes the objective function. As the number of observations grows, the posterior distribu-15
tion improves, and the algorithm becomes more certain of which regions in parameter space are16
worth exploring. In this study, we use two variables with real-world observations to construct the17
objective function. One is the OD exit flow, another is the journey time distribution (JTD). We di-18
vide the simulation period into several time intervals of width τ (e.g. 15 min). Denote t = 1,2, ...,T19
as the index of each time interval. We define the OD exit flow for origin i, destination j and time20
interval t as qi, jt , which is the number of passengers come from station i and exit at station j during21
time interval t (t is the index of exit time). qi, jt is the output of the network loading model, which22
can also be obtained from the AFC data since we know people’s tap-out time. Denote the observed23
OD exit flow as q̃i, jt . Within the time interval t, we can also obtain the ground truth JTD for each24
OD pair because all passengers’ travel time is available in the AFC data. Denote the estimated25
JTD for origin i, destination j and time interval t as pi, jt (x), and the corresponding ground-truth26
JTD derived from AFC data as p̃i, jt (x). We can formulate the difference of two distributions as27
Kullback-Leibler (KL) divergence (DKL), that is:28

DKL(pi, jt (x)||p̃i, jt (x)) =
∫

x
pi, jt (x) · log

pi, jt (x)
p̃i, jt (x)

dx. (4)

Therefore, the BSO can be formulated as29

min
β1,β2

w1 ∑
i, j,t

(qi, jt − q̃i, jt )2 +w2 ∑
i, j,t

DKL(pi, jt (x)||p̃i, jt (x))

s.t. qi, jt , pi, jt (x) = NPM(β1,β2) ∀i, j, t
(5)

where w1 and w2 are the weights to balance the scale of two terms. The effective capacity is30
an interesting phenomenon which can be observed in many real-world metro systems, including31
MTR. However, we admit this article only deal with it in a rough way. Based on our numerical32
tests, considering the effect of L and Q can make the model better fit the real-world observation33
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compared to a fixed physical capacity. In the future, we will propose more sophisticated method1
to better model this problem.2

PERFORMANCE MONITORING3
The proposed NPM can be used to monitor the performance at three dimensions: estimating crowd-4
ing patterns, diagnosing crowding causes and evaluating network resilience. These three dimen-5
sions reflect the interests of both operators and customers.6

Estimating crowding patterns7
Crowding patterns are one of the major components of the performance metrics. The crowding8
indicators are summarized in Table 2. All indicators are time-dependent with flexible aggregated9
intervals. To better visualize the indicators for real-world practice, a web-based visualization tool10
was developed, which takes the output of NPM as input. The example of visualization tool is11
shown in the case study.12

TABLE 2: Performance Indicators

Train Train load

Platform

Waiting time
Denied boarding times
Left behind rate
Number of boarding passengers
Number of arrival passengers
Queue length

Station
OD entry flow
OD exit flow

Link Link flow

Diagnose crowding sources13
To diagnose the reason of crowding, the visualization tool also helps to trace the sources of passen-14
gers in each link. For each link, we can trace where and when these passengers come from, which15
are grouped by OD pairs and time intervals. Knowing the crowding causes can assistant operators16
to release station-specific flow guidance information to relieve the congestion.17

Evaluate network resilience18
In network science, resilience is defined as the ability to provide and maintain an acceptable level19
of service in the face of faults and challenges to normal operation (21). NPM can be used to analyze20
the network resilience by comparing the performance indicators (e.g. waiting time) between the21
system with unplanned disruption and the normal system.22

In the NPM, there is a module to add link disruption to the system for a specific time.23
When a link disruption happens, we assume all passenger can receive this message. The line24
where the disrupted link located will stop working. Passengers who need to use the link will25
alight from the train and wait at the alighting station. Passengers who enter the system after the26
link disruption will wait at the origin station if they are going to use the link until the blockage27
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is cleared. Passengers who do not use the disrupted link will not be affected. This assumption1
may be a simplification passengers’ behavior because the dynamic route change is not considered.2
However, given that most of the incidents in metro systems only last for several minutes, this3
assumption is still reasonable because passengers can accept for short time waiting. More complex4
situations with passengers’ route change and operators’ guidance can be incorporated in the future.5
The case study for network resilience analysis is shown in Section 5.4.6

CASE STUDY7
The NPM was demonstrated and validated using data from Hong Kong MTR System8

Hong Kong MTR Network9
The map for Hong Kong MTR system is shown in Fig 2. In this study, the airport express and light10
rail transit services were not considered since they are separated from the urban railway lines and11
passengers who enter the urban railway lines from these services need to tap-in again. The system12
consists of 10 lines and 114 stations, including 16 transfer stations. In this network, most transfer13
stations connect only two lines. A special case is Admiralty (purple triangle in the figure) in the14
Hong Kong island, where three lines pass through the same transfer station. The Admiralty station15
is in the CBD area of Hong Kong, and there are serious crowding problem in peak hours due to the16
high volume of passengers boarding and transferring at this station.

FIGURE 2: Hong Kong MTR Metro System Map
17

System settings18
The AFC data in March 16th (Thursday), 2017 is used to generate the OD entry demand and19
conduct the effective capacity calibration. Since AVL data is not available for all lines, the time20
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table was used to provide train movement information, which may introduce some errors. Ideally,1
AVL data is more suitable for performance monitoring because it contains the actual train arrival2
and departure information. Since the evening peak is the most congested period. We only consider3
the period from 17:00 to 20:00 for model application. The warm-up time and cool-down time are4
both set as 1 hour. The running time for is about 15 minutes in a personal computer with a 3.6GHz5
CPU.6

To test the network resilience, we add the link disruption between Cheuang Sha Wan station7
and Sham Shui Po station in the Tsuen Wan Line (see the blue square in Figure 2). Since Tsuen8
Wan Line is very busy during evening peak in the north bound, we hope to analyze how does link9
disruption in Tsuen Wan Line affect the system. Two scenarios are considered, one is the disruption10
during 17:15-17:30, when the system is not yet very congested. Another is the disruption during11
18:00-18:15, when the system is already very congested.12

Model Calibration13
To estimate the route choice behavior, we launched a survey to the MTR system users. A total14
number of 31,640 passengers completed the questionnaire. After filtering duplicate responses,15
26,996 responses were available. The model results are shown in Table 3. The main explanatory16
variables are the total in-vehicle time, relative transfer walking time and number of transfers. The17
relative transfer walking time is defined as total transfer walking time divided by the map distance18
of the path. All variables are statistically significant with the expected signs. Routes with high19
in-vehicle time, walking time and number of transfers are less likely to be chosen by passengers.20
Based on the estimated parameters, we are able to calculate path shares for all OD pairs in the21
MTR system.22

TABLE 3: Route Choice Model Estimation Results

Estimate Std. Error t-value

In-vehicle time -0.184 0.001 -18.82 ***
Relative transfer walking time -3.204 0.209 -15.29 ***
Number of transfers -0.484 0.065 -7.49 ***
CF -2.014 0.648 -3.11 **

ρ2 = 0.3948
***: p<0.01; **:p<0.05.

As for the EC calibration, the weights are set to t w1 = 1 and w2 = 1000 to match the23
scale of two terms in the objective function. C = (230/car×Number of cars per train) is used24
according to MTR’s standard. The optimal coefficients we got is β1 = 0.0904 and β2 = 0.0718,25
which correspond to our expectations.26

Numerical results27
Model validation28
To validate whether the proposed NPM can replicates the actual conditions, field observation data29
at Admiralty station on the same day were used for comparison. The data were collected by30
MTR employees who counted passengers on the platform during 18:00-19:00. The left behind31
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rate, number of arrival passengers (sum of tap-in and transfer passengers) and number of boarding1
passengers are recorded. The comparison results are shown in Figure 3. The patterns of number2
of boarding and arrival passengers match the ground truth well. The peak in Figure 3a is due to3
an empty train dispatched from an upstream station, so that more capacity is available to serve the4
passengers at Admiralty. The empty train dispatching information is embedded into the model. In5
terms of the left behind, we can see the percentage of passengers being left behind different times6
can also be estimated well. Figure 4 shows the comparison of OD exit flows between the NPM7
estimated ones and the true ones extracted from AFC data. The top 50 stations with higher exit8
flows are displayed.9

The model errors may come from the followings: 1) Use of timetable rather than AVL data.10
2) Error in assumed path shares and effective capacity. 3) Measurement error in access, egress and11
transfer times. Overall, the model can well capture the real-world situations and is effective for12
performance monitoring.13

(a) Boarding Passenger Comparison

(b) Arrival Passenger Comparison (c) Left Behind Comparison

FIGURE 3: Model Validation at the Admiralty Station (18:00-19:00)

Crowding analysis14
The spatial distribution of OD entry flow and link flow are shown in Figure 5a. The critical stations15
and links at different times can be identified. For example, the most busy station in the evening16
peak is Central, located in the Central area of Hong Kong Island. During the peak hour (18:00-17
19:00), more than 120,000 passengers entering this station. Similarly, the crowded lines can also18
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(a) 18:00-18:30

(b) 18:30-19:00

FIGURE 4: OD Exit Flow Comparison (18:00-19:00)

be identified at different times, such as the Island Line (blue), Tsuen Wan Line (red) and Kwun1
Tong Line (green).2

The spatial distribution of waiting time and left behind rate are shown in Figure 5b and 5c,3
from which we can recognize the critical congested platforms. The left behind rate is defined as4
the percentage of passengers being left behind. The platform ID in this figured is named by station5
ID + line ID + direction. For example, 2_11_1 means the platform in Admiralty station serving the6
Tsuen Wan Line in the north direction. The long waiting time may be caused either by headway7
or by denied boarding. Figure 5b shows that most of the long-waiting-time platforms are due to8
long headway, except for 27_13_1 and 2_11_1. Passengers have to wait for more than 1 headway9
in these two platforms because of the congestion. Figure 5c shows the top 10 crowded platforms.10
The most congested platform during peak hour is in Admiralty station in northbound Tsuen Wan11
Line with north direction . The Wan Chai station in eastbound Island Line with (27_13_1) is also12
very crowded with around 68% left behind rate.13
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(a) Spatial Distribution of OD Entry Flow and Link Flow

(b) Average Waiting Time (c) Left Behind Rate

FIGURE 5: Network Crowding patterns (18:00-19:00)

Network resilience evaluation1
Two scenarios with link disruption in Tsuen Wan Line in the 17:15-17:30 (Scenario 1) and 18:00-2
18:15 (Scenario 2) periords are analyzed. The benchmark scenario is the one without link disrup-3
tion. The waiting time comparison among those three scenarios are shown in Figure 6. We find4
that the disruption in 17:15-17:30 will affect the system for half an hour (passengers tap-in dur-5
ing 17:00-17:30), where the passengers’ waiting time will recover to the normal state after 17:30.6
However, if the link disruption occurs in 18:00-18:15, which is the busiest time for the network, the7
whole system will take more than 1 hour to return to its normal state. Passengers who tap in during8
18:00-18:15 suffer more than twice waiting time than the normal situation. The system recovery9
time is an important indicator of network resilience. Thus, the proposed NPM can be used to test10
the resilience of different network structures, operation/response strategies and types of incidents,11
which shows more functionality than other models in the literature.12
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FIGURE 6: Waiting Time Comparison under the Link Disruption Scenarios

CONCLUSION AND DISCUSSION1
This paper proposed a general framework for a Network Performance Model (NPM) with the2
purpose of network performance monitoring. The major component of NPM is an event-driven3
network loading module, which is capable of simulating passengers’ walking, queuing, boarding,4
and alighting processes. The applications of NPM include estimating crowding patterns, diagnos-5
ing crowding sources and evaluating network resilience. A method for calibrating train capacity is6
introduced, which explicitly recognizes that capacity may be different at different stations depend-7
ing on the congestion level. The model is applied to the Hong Kong MTR network for illustration.8
It is first validated with real-world observations, and then applied to demonstrate the capabilities9
of performance monitoring. The spatial and temporal analysis of crowding patterns are conducted10
from different perspectives.11

The developments in this paper have been focused on a general framework, while the mod-12
els and examples we presented in this paper still have some limitations. First, the accuracy of13
NPM relies on the calibration of path choice and train capacity. As we target in a general frame-14
work, future research could incorporate the AFC data-based path choice estimation into the model,15
rather then calibration with survey data. Second, the effective train capacity model can be more16
sophisticated. Behavioral models of passengers’ willingness to board can be incorporated with the17
optimization techniques. Third, the resilience evaluation module is a simplification of real-world18
situation. Passengers may choose to use other modes when the incidents happen. And the operators19
may provide information to passengers with recommendations. Future research should incorporate20
more complex behaviors from both passenger’s and operator’s perspectives.21

Many promising implications for both practice and research can be conducted in the future.22
First, the model can be easily extended from performance monitoring to operations planning. By23
adjusting the input, the proposed NPM is capable of evaluating different operation strategies, such24
as adjustment in time table, diffident empty train arrangement, change in OD demand and network25
structures. Second, the NPM can also be incorporated into a network assignment model. In the26
case of long-term planning, the NPM can be used with a day-to-day updating framework to address27
the increasing demand and change of choice behaviors with the user equilibrium assumption (22).28
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Third, by applying this model, we can further reveal other service satisfactory indicators, such as1
the availability of seats, the standing, walking times and the reliability of total travel time; hence,2
the results of this paper can applied on various choice modeling problems, serving future decision3
making processes.4
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